Transcriptional regulation of glial fibrillary acidic protein by corticosterone in rat astrocytes in vitro is influenced by the duration of time in culture and by astrocyte-neuron interactions.
نویسندگان
چکیده
In the rat hippocampus and cortex, the transcription of glial fibrillary acidic protein (GFAP), an astrocyte intermediate filament protein, is inhibited by glucocorticoids. The present study examined the regulation of GFAP expression by glucocorticoids in astrocytes in vitro. Corticosterone (CORT) increased GFAP messenger RNA, protein, and transcription rates in cultured primary neonatal astrocytes, responses opposite the GFAP responses to CORT in vivo. The direction of GFAP regulation by corticosterone in vitro is reversed by coculture with neurons or by extended culture for 3 months. The switch in the direction of GFAP regulation by CORT during prolonged culture is associated with a 3-fold increased prevalence of type II glucocorticoid receptor (GR). These findings were corroborated with a promoter construct that contained 1.9 kilobases of 5'-up-stream rat GFAP DNA with a luciferase reporter. Thus, the direction of GFAP transcription to CORT is subject to the postreplicative time in culture and to interactions with neurons, in which 5'-up-stream sequences contain sufficient information to mediate the switch in the direction of the response to CORT. This in vitro model may be used to analyze how interactions of astrocytes with neurons or other cell types influence the hormonal regulation of GFAP.
منابع مشابه
Increased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملAcute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملPrenatal zinc supplementation ameliorates hippocampal astrocytes activation and inflammatory cytokines expression induced by lipopolysaccharide in a rat model of maternal immune activation
Objective: There is evidence that gestational exposure to lipopolysaccharide (LPS) results in fetal zinc deficiency, and eventually neurodevelopmental abnormalities. In this study, we utilized a rat model of maternal immune activation (MIA) to investigate the possible neuroprotective effect of zinc supplementation throughout pregnancy on hippocampal astrocytes activation as well as inflammatory...
متن کاملEffect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury
Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...
متن کاملP 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism
Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 136 5 شماره
صفحات -
تاریخ انتشار 1995